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Results are presented of a numerical investigation of laminar free convection heat 
transfer in air about a horizontal circular cylinder in the moderate Grashoff 
number range (104 < Gr m ~ 109), for linear and quadratic laws of surface tem- 
perature variation. 

One meets with heat-transfer processes in natural convection in several areas of con- 
temporary engineering. A topic that has received a good deal of study is steady-state con- 
vection near isothermal flat surfaces, and also about isothermal circular cylinders. There 
is a bibliography on this topic, in particular, in [i, 2]. 

However, in the actual conditions of operation in specific elements of power equipment, 
under cooling or heating conditions, considerable temperature differences between the top 
and bottom points [3] can arise and persist for some. If here the rate of change of tem- 
perature is less than I deg/sec, then natural convection processes in air can be considered 
as practically quasistationary [4]. 

Free laminar convection about a nonisothermal cylinder for one of the possible surface 
temperature distribution laws was examined in [5]. However, the errors in the numerical 
method used, and also the simplified mathematical model (boundary-layer approximation, ne- 
glect of surface curvature effect), gave rise to inadequate accuracy in the solution ob- 
tained, which moreover is discontinuous as ~ tends to ~. In particular, it is not in satis- 
factory agreement even with more exact theoretical results for the isothermal case, based 
on the same flow model [6]. 

The aim of the present paper is a numerical investigation of natural convection about 
a horizontal circular cylinder in air (Pr = 0.7), the medium most frequently met with in 
engineering applications, based on solution of the full Navier--Stokes equations in the 
Boussinesq approximation, in the range of Grashof number i0~-i09, for linear and quadratic 
surface temperature distribution laws, and various values of temperature differences between 
the upper and lower points of the axial section. 

The mathematical model of the process is the Navier--Stokes equations in the Boussinesq 
approximation, which, following conversion to dimensionless form and introductio~i of a new 
independent variable, reduce to a system of three differential equations with identical 
structure: 

exp(--2~) - ~  ?~ O~ 09 ---~_ ~ O~ ~ = S ,  (1) 

where as the  des i r ed  f u n c t i o n  ~ we cons ide r ,  r e s p e c t i v e l y ,  the  a x i a l  component of the vor-  
ticity, the stream function @, and the temperature T. The values of the coefficients y and 
S are shown in Table i. As scales of length, velocity, and temperature we use, respectively, 
the cylinder radius ro, the ratio of the diffusivity to the cylinder radius a/ro, and the 
difference between the maximum cylinder surface temperature and the air, tm--t f. 

The computational region is the semiannulus of radius roexp(5) = 148.41 ro. The radius 
is large enough and the assumption that the independent variables are small on it is well 
founded. 

The problem is solved with the following boundary conditions: 
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TABLE i. Coefficients of Eq. (i) 

q) 

T 

? 
1 

Pr 
0 
I 

s 
GrmPr8 (0@ __0T sin q~ k ~ cos q) 

0 

exp (~) 

v,_ ~ l---- 

o,/s 

eL i l l  

Nut 
@r~ 2s 
qS': 

@ 

b 

~f 
--Iv 
--V 

Fig. i. Comparison of calculated and experimental 
data for the isothermal case; a) profiles of the 
tangential component of the velocity vector for 
#=90 ~ (numerical solution: i) GrmPr = 105; 2) 
106; 3) 107; experiment [8]: I) GrmPr = 4"i0~; 
II) 1.9"105; III) 3"105; b) local Nusselt number 
distribution (present calculation; I) GrmPr = 
2.76"i0~; 2) 6.2"106; experiment [8]: I) 
GrmPr = 2.76"105; [9]; II) GrmPr = 6.2"106; III) 
numerical solution [5]; IV) method of integral 
realtions [i0]; V) numerical solution [3]). The 
parameter ~ is in degrees. 

~ = 0  0r = ~ = 0 ,  T =  T(qO; ~ = 5  T = ~ = ~ = 0 ;  

q~=0 a; 0 < ~ 5  ~ = 9 .  OT 
-- O, 

where 

V~=--exp(--~) ~ V~ = exp (-- ~) 0~ 
0~ '  

[ 0 (exp (~) V~) 0V~ ] exp(-- ~) f~= exp(--~) ~ 0q9 

The transition from tP~esystem of differential equations (i) to a system of finite-dif- 
ference equations was carried out with the aid of an integrointerpolation method. An ex- 
plicit scheme was used with a mixed approximation for the convective terms, a combination 
of directed and central differences. In the solution we used the Seidel method in conjunc- 
tion with lower relaxation. The boundary conditions for the vorticity at the cylinder sur- 
face were determined by the method described in [7]. 

In order to evaluate the accuracy of the method used we computed the heat transfer in 
natural convection on an isothermal cylinder. The results obtained agree satisfactorily 
with the experimental data (Fig. i). Two possible laws were studied for the variation of 
dimensionless temperature (or, which is the same thing, dimensionless local temperature head) 
over the cross section contour: linear and quadratic: 

8--] T-- - -  ~ + ~ ,  (2) 
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Fig. 2. Variation of the profile of the tangential component 
of the velocity vector for various laws of variation and 
magnitude of the temperature head ((GrmPr = 107); the solid 
curves are the isothermal law, the broken curves are 
quadratic, and the dot--dash curves are linear): i) 6 = 
0.25; 2) 1.75; a) ~ = 30~ b) 90; c) 150. 

Fig. 3. The functions e and ~* as a function of the law of 
the variation and the value of the tempeature head (the 
solid curves are ~; the broken curves are ~*): i) linear 
law; 2) quadratic law. 

6ml 
T -- ~2 + f, ~2 (3) 

where 

/1, 0 ~ 6 ~ 1  
6 = (Tu--Tz) § 1' f = / 2 - - 6 ; 1 < 6 ~ 2 .  

The value of the constant ~ in Eqs. (2) and (3) in the conputations was varied from 0 to 2, 
which allowed us to span the whole range of temperature differences between the upper (T u) 
and lower (T l) points of the profile, one of which was assumed to be I. 

Analysis of the results of the calculations shows that the nonisothermal nature of the 
boundary conditions does not change the general character of flow over the cylinder, but it 
appreciably influences the structure of the free convection flow. Figure 2 shows typical 
distributions of the tangential component of the velocity vector along the normal to the 
cylinder surface, for a number of values of the polar angle. It can be seen that, on the 
whole, the law of variation of the temperature head influences the flow structure less than 
does the temperature drop. The greatest differences in the distribution of isotherms with 
respect to the isothermal case were observed for small 6, when the cylinder surface tempera- 
ture became less than that of the fluid flowing over it: the individual isotherms were 
closed on an arc of the circle of the cross section lying in the upper semiplane. 

From the temperature distribution in the computational region we determined the local 
and average dimensionless heat fluxes: 

qd 2 ( 0T 
Q = X( t~ - - t  s) \ o~ 7~=o' 

qd 
_ 1 ~ Qd~. 
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TABLE 2. 

Param- 
eter 

Nul 

8 

Q 
G o,2a rl/1 

Coefficients of the Polynomials 

Law of temp, 
variation 
over me 
con tnur  

(2) 
(3) 
(2) 
(2) 
(2) 
(2) 
(2) 
(2) 
(2) 
(3) 
(3) 
(3) 
(3) 
(3) 
(3) 
(3) 

deg 

0 
30 
60 
90 

120 
150 
18o 

3O 
60 
90 

120 
150 
180 

Ao 

0,517 
0,705 
0,83 
0,675 
0,489 
0,43 
0,291 
0,145 
0,055 

--0,0103 
0,658 
0,612 
O, 54 
0,446 
0,212 

i 0,0082 
i--0,015 

--A, 

0,203.10-2 
2,168 
2,014 
0,963 
0,839 
1,216 
0,98 
O, 704 
6,733 
0,031 
1,191 
1,078 
1,07 
1,232 
0,705 
0,46 
O, 762 

A~ 

10-~ 
6,231 
5,64 
2,081 
2,237 
3,216 
2,853 
2,47 
2,46 
0,657 
2,704 
2,557 
2,59 
3,105 
2,36 
1,888 
1,89 

--A~ 

0,1245.10 -~ 
5,075 
4,672 
1,786 
1,917 
2,645 
2,3 
2,021 
1.981 
0,555 
2.289 
2.197 
2,167 
2,504 
1,968 
1,504 
1.3 

A4 

4,27.10 -12 
1,265 
1,167 
0,455 
0,488 
0,673 
0,57 
0,5 
0,498 
0,14 
0,587 
0,568 
0,55 
0,622 
0,493 
0,365 
0,301 

With nonisothermal boundary conditions in all the variants of the calculations, the 
average dimensionless heat flux was reduced in comparison with the isothermal case. Here 
the factor of decrease in the Grashof number range studied practically depends only on the 
parameter 8. Therefore, it proved possible to approximate to the computational data, using 
the least-squares method, for each of the temperature distribution laws considered, in the 
range of variation of ~ most probable for technical applications, by relations of the type 

= -Q~ - = ~ Ai6 ~, 0.25 ~ 6 ~ 1.75, 
QI i=o 

where Q6 is the average dimensionless heat flux, corresponding to the fixed value Q~, and 

4 

QI = ~ A, (GrmPr) ~ (4) 
f=0 

is the average dimensionless heat flux for the isothermal case. The coefficients of the 
polynomials are shown in Table 2, and the relations are shown in Fig. 3. The function ~(~) 
depends appreciably on the temperature distribution law for the cylinder surface. Figure 3 
also shows the analogous relations for the average Nusselt number 

= N o_ _ / (5 = 
Nu, o 

I t  c a n  b e  s e e n  t h a t  w i t h  a n  i n c r e a s e  o f  t h e  t e m p e r a t u r e  h e a d  o v e r  t h e  c o n t o u r  o f  t h e  c r o s s  
s e c t i o n  f o r  b o t h  l a w s ,  o v e r  a w i d e  r a n g e  o f  v a r i a t i o n ,  t h e  i n t e g r a l  mean v a l u e s  o f  t h e  h e a t  
f l u x  d e n s i t y  and  t h e  t e m p e r a t u r e  h e a d  a r e  p r a c t i c a l l y  e q u a l .  

We note that the calculation of average heat transfer from the parametric relation for 
the isothermal case, Eq. (4), in which the Grashof number is constructed from the mean-in- 
tegral temperature head gives acceptable results (the error in the calculations is less than 
5%) only in the range 0.9 ~ ~ ~ 1.25. 

It is of i~terest to study the influence of the nonisothermal nature of the boundary 
conditions on the local heat transfer characteristics for the cylinder. 

Calculations show that in the range of Grashof number investigated, the group QGrm ~ 
can be approximated, with acceptable accuracy, as a function only of the parameter 8. The 
results of the calculations were processed by the least-squares method, and for a number of 
values of the polar angle relations were established of the type 

4 

Qr Gr~O. 25 __-- ~ A~i6~ , 
i=0  

w h e r e  ~p=30/ ' ;  ] - - 0 ,  1, 2, . . . ,  6; 0 , 2 5 ~ 6 ~ 1 . 7 5 .  
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Fig. 4. Local heat transfer on a cylinder with (a) 
a linear and (b) a quadratic law for variation of the 
temperature around the cross section: i) ~ = 0; 2) 
0.25; 3) 0.5; 4) 0.75; 5) i; 6) 1.25; 7) 1.5; 8) 1.75; 
9) 2. 

The coefficients A~i are given in Table 2. With the aid of Eq. (5) we can determine 
the local heat fluxes at specific points of the contour, and then using some method of in- 
terpolation, also at intermediate points. The results of calculations like these are shown 
in Fig. 4, which also shows, for completeness, the variants ~ = 0 and ~ = 2, calculated 
directly from the original equations (Gr m = 107). We note that there is a substantial quali- 
tative and quantitative discrepancy from the results obtained for isothermal boundary condi- 
tions. For 6 > I one sees a clearly pronounced maximum in the distribution of QGrm ~ 
whose absolute value decreases with increase of 8, and whose location is displaced toward 
the top of the half-plane of symmetry. For small 8, beginning with a certain value of ~, 
the group changes its sign for the reason mentioned above. 

Thus, from analysis of the results of the present investigation one can assert that the 
temperature distribution law around the contour of the cross section of a horizontal circu- 
lar cylinder has a strong influence on the law of free convection heat transfer. Neglect of 
this factor, i.e., use in engineering calculations of relations obtained for isotherm~l 
boundary conditions, can lead to appreciable errors in determining the local and average heat 
transfer coefficients, even when there are considerable temperature differences between the 
upper and lower points. 

NOTATION 

~, polar angle, calculated from the lowest point of the contour of cross section of a 
cylinder; r, radial coordinate; ro, d, cylinder radius and diameter; R = r/ro; ~ = in(R); 
tm, maximum temperature on the cylinder surface; tf, temperature of the fluid at an infinite 
distance from the cylinder; T = (t--tf)/(tm--tf), dimensionless temperature; ~, 4, dimension- 
less axial component of the vorticity and the stream function; a, ~, %, B, respectively, the 
coefficients of diffusivity, kinematic viscosity, heat conduction, and volume expansion of 
the fluid; g, acceleration due to gravity; Gr m = gB(tm--tf)d3/~ 2, Grashof number; Pr = ~/a, 
Prandtl number; q, q, local and average heat fluxes; Q, ~, local and average dimensionless 
heat fluxes; ~, heat-transfer coefficient; Nu = ed/X, Nusselt number. Subscripts: ~, 
local value; m, maximum value; 8, the delta function; i, isothermal case; w, at the wall; f, 
far from the cylinder surface. 
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FREE-CONVECTION HEAT TRANSFER ON A VERTICAL SURFACE WITH A TEMPERATURE 

DISCONTINUITY 

Yu. A. Sokovishin and L. A. Erman UDC 536.25 

Parametric correlations are obtained for calculating heat transfer on a vertical 
surface with a temperature discontinuity, over a wide range of variation of 
Prandtl number and for calculating the relations of temperatures at the wall. 

The investigation of free convection heat transfer at a wall with various boundary con- 
ditions involves problems of singular perturbations of the full Navier--Stokes equations and 
the energy equation. It has been shown by the method of matched asymptotic expansions that 
in the first approximation this problem can be considered using the boundary-layer equations 
[i]. Numerical calculations of free convection on a vertical surface in air [2, 3] agree 
well with experimental data [4]. The available data in the literature on heat transfer re- 
fer to particular cases of temperature discontinuity and to Pr = 0.7. 

We consider free convection on a vertical plane surface. On the lower part of the wall 
(0 ~ x 4 xo) the temperature is given as Two, and on the upper part (x > xo) the tempera- 
ture is Twa (Twx > T~, Tw2 > T~). Due to the temperature difference between the wall and 
the surrounding medium, the motion of the fluid is directed upward, parallel to the wall. 
Assuming that energy dissipation and the work of compression are negligibly small, we can 
represent the system of equations of motion and heat transfer in the boundary layer in the 
form [i] 

au av a~ aft 0"2~ 
- -  ~ 0 ,  u q -  v - - : a ~  
ax + ag ~ @ @2 ' 

au au a2u 
u + v - - =  g ~  + v 

ax ay ag~ 
(i) 

with the boundary conditions 

U:==O, v ~ O  for y ~ O ;  u ~ O ,  ~ 0  for y - - ~ ;  
(2) 

= ~ c l  for x ~ Xo; ~ = ~02 for X ~  X o. 

We now transform the system of equations (I), introducing the stream function ~(x, y) 
from the continuity equation: 
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